Phosphorylation is one of the mechanisms controlling the activity of heat-shock transcription factors in yeast and mammalian cells. Here we describe partial purification, identification, and characterization of a protein kinase that phosphorylates the Arabidopsis heat-shock factor AtHSF1 at multiple serine residues. The HSF1 kinase forms a stable complex with AtHSF1, which can be detected by kinase pull-down assays using a histidine-tagged AtHSF1 substrate. The HSF1 kinase interacts with the cell-cycle control protein Suc1p and is immunoprecipitated by an antibody specific for the Arabidopsis cyclin-dependent CDC2a kinase. Phosphorylation by CDC2a in vitro inhibits DNA binding of AtHSF1 to the cognate heat-shock elements, suggesting a possible regulatory interaction between heat-shock response and cell-cycle control in plants.
CITATION STYLE
Reindl, A., Schöffl, F., Schell, J., Koncz, C., & Bakó, L. (1997). Phosphorylation by a cyclin-dependent kinase modulates DNA binding of the Arabidopsis heat-shock transcription factor HSF1 in vitro. Plant Physiology, 115(1), 93–100. https://doi.org/10.1104/pp.115.1.93
Mendeley helps you to discover research relevant for your work.