A previous study has shown that the flow cytometric analysis of acridine-orange-stained Plasmodium falciparum growing in vitro generates a complex two-color display, regions of which correlate with the major morphological stages. In this report, four cell cycle compartments (A-D) are defined by characteristic ratios of red and green fluorescence of cells distributed throughout the erythrocytic cycle as well as by the differential effects of several metabolic inhibitors. The primary characteristic of cells in compartment A is the significant increase in red fluorescence. Inhibition of DNA synthesis by either aphidicolin or hydroxyurea causes the accumulation of cells at the interface between compartments A and B, whereas n-butyrate prevents cells in compartment A from reaching the A-B interface. Cells in compartment A display a small increase in green fluorescence which is independent of DNA synthesis but is enhanced by n-butyrate treatment. Cells in compartment B display a continued increase in red fluorescence coupled with a significant increase in green fluorescence, reflecting the onset of DNA synthesis in compartment B. The transition to compartment C is more abrupt and is associated with a marked increase in green fluorescence and little increase in red fluorescence. Compartment D is characterized by an increase in red fluorescence and a continued rise in green fluorescence. It is postulated that these discontinuities in the two-color display reflect not only changes in the rates of RNA and DNA synthesis but also decondensation of parasite chromatin in compartment A as the organism prepares for DNA synthesis, and re-condensation in compartment D as the newly replicated chromatin prepares for segregation into merozoites. The method described promises to provide a sensitive and rapid technique to study the effects of various factors on the growth cycle of the parasite.
CITATION STYLE
Hare, J. D. (1986). Two-color flow-cytometric analysis of the growth cycle of Plasmodium falciparum in vitro: Identification of cell cycle compartments. Journal of Histochemistry and Cytochemistry, 34(12), 1651–1658. https://doi.org/10.1177/34.12.2431031
Mendeley helps you to discover research relevant for your work.