Cancer-associated fibroblasts (CAFs) have been implicated in the development of resistance to anticancer drugs; however, the role and mechanism underlying CAFs in luminal breast cancer (BrCA) tamoxifen resistance are unclear. We found that stromal fibroblasts isolated from the central or peripheral area of BrCA have similar CAF phenotype and activity. In vitro and in vivo experiments showed that CAFs derived from clinical-luminal BrCAs induce tamoxifen resistance through decreasing estrogen receptor-α (ER-α) level when cultured with luminal BrCA cell lines MCF7 and T47D. CAFs promoted tamoxifen resistance through interleukin-6 (IL-6) secretion, which activates Janus kinase/signal transducers and activators of transcription (JAK/STAT3) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways in tumor cells, followed by induction of epithelial-mesenchymal transition and upregulation of E3 ubiquitin ligase anaphase-promoting complex 10 activity, which targeted ER-α degradation through the ubiquitin-proteasome pathway. Inhibition of proteasome activity, IL-6 activity or either the JAK/STAT3 or PI3K/AKT pathways markedly reduced CAF-induced tamoxifen resistance. In xenograft experiments of CAFs mixed with MCF7 cells, CAF-specific IL-6 knockdown inhibited tumorigenesis and restored tamoxifen sensitivity. These findings indicate that CAFs mediate tamoxifen resistance through IL-6-induced degradation of ER-α in luminal BrCAs.Oncogene advance online publication, 9 June 2014; doi:10.1038/onc.2014.158.
CITATION STYLE
Sun, X., Mao, Y., Wang, J., Zu, L., Hao, M., Cheng, G., … Wang, J. (2014). IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene. https://doi.org/10.1038/onc.2014.158
Mendeley helps you to discover research relevant for your work.