This paper statistically quantifies the lifecycle greenhouse gas (GHG) emissions from six distinct reactor-based (boiling water reactor (BWR), pressurized water reactor (PWR), light water reactor (LWR), heavy-water-moderated reactor (HWR), gas-cooled reactor (GCR), fast breeder reactor (FBR)) nuclear power generation systems by following a two-step approach that included (a) performing a review of the lifecycle assessment (LCA) studies on the reactor-based nuclear power generation systems; and (b) statistically evaluating the lifecycle GHG emissions (expressed in grams of carbon dioxide equivalent per kilowatt hour, gCO2e/kWh) for each of the reactor-based nuclear power generation systems to assess the role of different types of nuclear reactors in the reduction of the lifecycle GHG emissions. Additionally, this study quantified the impacts of fuel enrichment methods (centrifuge, gaseous diffusion) on GHG emissions. The mean lifecycle GHG emissions resulting from the use of BWR (sample size, N = 15), PWR (N = 21), LWR (N = 7), HWR (N = 3), GCR (N = 1), and FBR (N = 2) in nuclear power generation systems are 14.52 gCO2e/kWh, 11.87 gCO2e/kWh, 20.5 gCO2e/kWh, 28.2 gCO2e/kWh, 8.35 gCO2e/kWh, and 6.26 gCO2e/kWh, respectively. The FBR nuclear power generation systems produced the minimum lifecycle GHGs. The centrifuge enrichment method produced lower GHG emissions than the gaseous diffusion enrichment method.
CITATION STYLE
Kadiyala, A., Kommalapati, R., & Huque, Z. (2016). Quantification of the lifecycle greenhouse gas emissions from nuclear power generation systems. Energies, 9(11). https://doi.org/10.3390/en9110863
Mendeley helps you to discover research relevant for your work.