The present study describes the synthesis of highly active and ordered structures of nickel nanocatalysts by a facile, green, and economically viable approach. The study reveals efficient catalytic activity for the degradation of a number of toxic organic dyes, such as eosin-B (EB), rose bengal (RB), eriochrome black-T (ECBT), and methylene blue (MB). The stable ordered nickel nanostructure (Ni NSs) arrays were prepared via a modified hydrazine reduction route with unique and controlled morphologies in a lyotropic liquid crystalline medium using a nonionic surfactant (Triton X-100). Characterization and optimization studies for the fabricated Ni NSs involving their surface binding interactions, size, and morphologies were carried out using UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM).
CITATION STYLE
Kalwar, N. H., Sirajuddin, Soomro, R. A., Sherazi, S. T. H., Hallam, K. R., & Khaskheli, A. R. (2014). Synthesis and Characterization of Highly Efficient Nickel Nanocatalysts and Their Use in Degradation of Organic Dyes. International Journal of Metals, 2014, 1–10. https://doi.org/10.1155/2014/126103
Mendeley helps you to discover research relevant for your work.