We present a merger-driven evolutionary model for the production of luminous (LIRGs) and ultraluminous infrared galaxies (ULIRGs) with warm infrared (IR) colours. Our results show that simulations of gas-rich major mergers including star formation, black hole growth and feedback can produce warm (U)LIRGs. We also find that while the warm evolutionary phase is associated with increased active galactic nucleus (AGN) activity, star formation alone may be sufficient to produce warm IR colours. However, the transition can be suppressed entirely - even when there is a significant AGN contribution - when we assume a single-phase interstellar medium, which maximizes the attenuation. Finally, our evolutionary models are consistent with the 25-to-60 μm flux density ratio versus LHX/LIR relation for local LIRGs and ULIRGs, and predict the observed scatter in IR colour at fixed LHX/LIR. Therefore, our models suggest a cautionary note in the interpretation of warm IR colours: while associated with periods of active black hole growth, they are probably produced by a complex mix of star formation and AGN activity intermediate between the cold star formation dominated phase and the birth of a bright, unobscured quasar. © 2009 The Authors. Journal compilation © 2009 RAS.
CITATION STYLE
Younger, J. D., Hayward, C. C., Narayanan, D., Cox, T. J., Hernquist, L., & Jonsson, P. (2009, June). The merger-driven evolution of warm infrared luminous galaxies. Monthly Notices of the Royal Astronomical Society: Letters. https://doi.org/10.1111/j.1745-3933.2009.00663.x
Mendeley helps you to discover research relevant for your work.