The Effect of the Artificial Reef on the Structure and Function of Sediment Bacterial Community

5Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

The bacterial community in sediment is sensitive to artificial disturbance, and they respond differently to human disturbance, such as changing the nutrient cycling and energy flow in marine ecosystems. However, little is known about the dynamics and distribution of bacterial community structures in marine sediments and potential biogeochemical functions during the long-time succession in marine ranching. In the present study, we compared the dynamics of the bacterial composition and potential biogeochemical functions of sediment to ten years (TR) and one-year new artificial reef (NR) areas using metagenomic next-generation sequencing technology. Results revealed that NR reduces the Pielou’s evenness and Shannon index. Similarly, nonmetric multidimensional scaling showed that the beta diversity of sediment bacterial communities in NR significantly differed between TR and non-artificial reef areas. Previously, TR biomarkers were frequently associated with organic matter decomposing and assimilating in the organically enriched sediments (i.e., Acinetobacter). The soluble reactive phosphate (SRP) and total phosphorus (TP) concentrations were thought to be the primary driving forces in shaping the microbial community in sediment. Pseudomonas, Lactobacillus, and Ralstonia have a significant positive correlation with SRP, TP, nitrate, and TN, but a negative association with pH, Salinity, Hg, and depth. NR was found to have more negative correlation nodes, indicating that taxa face more competition or predation press. Vibrio served as the module-hubs in the network in all areas. In addition, chemoheterotrophy, aerobic chemoheterotrophy, and fermentation were the three most prominent functions of the three areas, accounting for 59.96% of the relative abundance of the functional annotation. Different bacteria in sediments may change the amount of biogeochemical cycle in the marine ranching ecosystem. These findings can increase our understanding of the succession of the microecosystem for the marine ranching sedimentary environment by revealing how artificial reefs affect the indigenous sediment bacterial community and their responses to environmental variation.

Cite

CITATION STYLE

APA

Tong, F., Chen, G., Feng, X., Liu, Y., & Chen, P. (2022). The Effect of the Artificial Reef on the Structure and Function of Sediment Bacterial Community. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142214728

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free