Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models

11Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Transient flow characteristics and dissipation mechanism in pressurized pipeline were investigated based on 1D friction models and 3D turbulence models, where the pressure density model was combined into the 3D continuity equation allowing for the elasticity of the fluid and the pipes. The applicability of 3D realizable k and 3D SST (shear stress transport) k turbulence models was verified with comparison to 1D traditional water hammer models and the experimental data for fast closing of the valve in the reservoir pipe valve system. The valve closure rule was instantaneously carried out using the grid slip CFD (computational fluid dynamics) technique. The SST k turbulence model has the highest accuracy in predicting the pressure attenuation of transient flows. The 3D detailed flow field confirms that the asymmetric flows induced by the change of valve opening within approximately three-fourths of the pipe inner diameter before the valve are captured. In the pressure wave cycles, the unsteady inertia, axial pressure gradient, viscous shear stress and turbulent shear stress mainly influence the velocity variations. During the pressure wave propagation, the viscous and turbulent dissipation are critical in the pressure attenuation in the wall region; the viscous dissipation is mainly concentrated in the viscous sublayer, while the turbulent dissipation increases to the maximum values at y 13 23.

Cite

CITATION STYLE

APA

Wu, G., Duan, X., Zhu, J., Li, X., Tang, X., & Gao, H. (2021). Investigations of hydraulic transient flows in pressurized pipeline based on 1D traditional and 3D weakly compressible models. Journal of Hydroinformatics, 23(2), 231–248. https://doi.org/10.2166/HYDRO.2021.134

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free