Automated collective motion analysis validates human keratinocyte stem cell cultures

4Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Identification and quality assurance of stem cells cultured in heterogeneous cell populations are indispensable for successful stem cell therapy. Here we present an image-processing pipeline for automated identification and quality assessment of human keratinocyte stem cells. When cultivated under appropriate conditions, human epidermal keratinocyte stem cells give rise to colonies and exhibit higher locomotive capacity as well as significant proliferative potential. Image processing and kernel density estimation were used to automatically extract the area of keratinocyte colonies from phase-contrast images of cultures containing feeder cells. The DeepFlow algorithm was then used to calculate locomotion speed of the colony area by analyzing serial images. This image-processing pipeline successfully identified keratinocyte stem cell colonies by measuring cell locomotion speed, and also assessed the effect of oligotrophic culture conditions and chemical inhibitors on keratinocyte behavior. Therefore, this study provides automated procedures for image-based quality control of stem cell cultures and high-throughput screening of small molecules targeting stem cells.

Cite

CITATION STYLE

APA

Kinoshita, K., Munesue, T., Toki, F., Isshiki, M., Higashiyama, S., Barrandon, Y., … Nanba, D. (2019). Automated collective motion analysis validates human keratinocyte stem cell cultures. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-55279-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free