Chiral nanostructures exhibiting different absorption of right- and left-handed circularly polarized light are of rapidly growing interest due to their potential applications in various fields. Here, we have studied the induction of chirality in atomically thin (0.6–1.2 nm thick) ZnSe and CdSe nanoplatelets grown by a colloidal method and coated with L-cysteine and N-acetyl-L-cysteine ligands. We conducted an analysis of the optical and chiroptical properties of atomically thin ZnSe and CdSe nanoplatelets, which was supplemented by a detailed analysis of the composition and coordination of ligands. Different signs of circular dichroism were shown for L-cysteine and N-acetyl-L-cysteine ligands, confirmed by different coordination of these ligands on the basal planes of nanoplatelets. A maximum value of the dissymmetry factor of (2–3) × 10−3 was found for N-acetyl-L-cysteine ligand in the case of the thinnest nanoplatelets.
CITATION STYLE
Kurtina, D. A., Grafova, V. P., Vasil’eva, I. S., Maksimov, S. V., Zaytsev, V. B., & Vasiliev, R. B. (2023). Induction of Chirality in Atomically Thin ZnSe and CdSe Nanoplatelets: Strengthening of Circular Dichroism via Different Coordination of Cysteine-Based Ligands on an Ultimate Thin Semiconductor Core. Materials, 16(3). https://doi.org/10.3390/ma16031073
Mendeley helps you to discover research relevant for your work.