The ErbB family of receptors, which includes the epidermal growth factor receptor (EGFR), ErbB2, ErbB3, and ErbB4, mediate signaling by EGF-like polypeptides. To better understand the role of the EGFR tyrosine kinase, we analyzed signaling by a kinase-inactive EGFR (K721M) in ErbB-devoid 32D cells. K721M alone exhibited no detectable signaling capacity, whereas coexpression of K721M with ErbB2, but not ErbB3 or ErbB4, resulted in EGF-dependent mitogen-activated protein kinase (MAPK) activation. The kinase activity, but not tyrosine phosphorylation, of ErbB2 was required for EGF-induced MAPK activation. The presence of tyrosine phosphorylation sites in K721M was not a requisite for signaling, indicating that transphosphorylation of K721M by ErbB2 was not an essential mechanism of receptor activation. Conversely, the mutated kinase domain of K721M (residues 648-973) and tyrosine phosphorylation of at least one of the receptors were necessary. EGF was found to activate the pro-survival protein kinase Akt in stable cell lines expressing K721M and ErbB2 but, unlike cells expressing wild-type EGFR, was incapable of activating signal transducers and activators of transcription (STAT) or driving cell proliferation. These results demonstrate that EGFR-ErbB2 oligomers are potent activators of MAPK and Akt, and this signaling does not require EGFR kinase activity.
CITATION STYLE
Deb, T. B., Su, L., Wong, L., Bonvini, E., Wells, A., David, M., & Johnson, G. R. (2001). Epidermal Growth Factor (EGF) Receptor Kinase-independent Signaling by EGF. Journal of Biological Chemistry, 276(18), 15554–15560. https://doi.org/10.1074/jbc.M100928200
Mendeley helps you to discover research relevant for your work.