Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries

550Citations
Citations of this article
181Readers
Mendeley users who have this article in their library.

Abstract

High-energy density lithium (Li) metal batteries (LMBs) are promising for energy storage applications but suffer from uncontrollable electrolyte degradation and the consequently formed unstable solid-electrolyte interphase (SEI). In this study, we designed self-assembled monolayers (SAMs) with high-density and long-range-ordered polar carboxyl groups linked to an aluminum oxide-coated separator to provide strong dipole moments, thus offering excess electrons to accelerate the degradation dynamics of carbon-fluorine bond cleavage in Li bis(trifluoromethanesulfonyl)imide. Hence, an SEI with enriched lithium fluoride (LiF) nanocrystals is generated, facilitating rapid Li+ transfer and suppressing dendritic Li growth. In particular, the SAMs endow the full cells with substantially enhanced cyclability under high cathode loading, limited Li excess, and lean electrolyte conditions. As such, our work extends the long-established SAMs technology into a platform to control electrolyte degradation and SEI formation toward LMBs with ultralong life spans.

Cite

CITATION STYLE

APA

Liu, Y., Tao, X., Wang, Y., Jiang, C., Ma, C., Sheng, O., … Lou, X. W. (2022). Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science, 375(6582), 739–745. https://doi.org/10.1126/science.abn1818

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free