Unprotected E-hydrazone esters are prized building blocks for the preparation of 1H-indazoles and countless other N-containing biologically active molecules. Despite previous advances, efficient and stereoselective synthesis of these compounds remains nontrivial. Here, we show that Pt single atoms anchored on defect-rich CeO2 nanorods (Pt1/CeO2), in conjunction with the alcoholysis of ammonia borane, promotes exceptionally E-selective hydrogenation of α-diazoesters to afford a wide assortment of N-H hydrazone esters with an overall turnover frequency of up to 566 hours−1 upon reaction completion. The α-diazoester substrates could be generated in situ from readily available carboxylic esters in one-pot hydrogenation reaction. Utility is demonstrated through concise, scalable synthesis of 1H-indazole–derived pharmaceuticals and their 15N-labeled analogs. The present protocol highlights a key mechanistic nuance wherein simultaneous coordination of a Pt site with the diazo N=N and ester carbonyl motifs plays a central role in controlling stereoselectivity, which is supported by density functional theory calculations.
CITATION STYLE
Liu, C., Chen, Z., Yan, H., Xi, S., Yam, K. M., Gao, J., … Loh, K. P. (2019). Expedient synthesis of E-hydrazone esters and 1H-indazole scaffolds through heterogeneous single-atom platinum catalysis. Science Advances, 5(12). https://doi.org/10.1126/sciadv.aay1537
Mendeley helps you to discover research relevant for your work.