The concept of preferred collision geometry in a bimolecular reaction is at the heart of reaction dynamics. Exemplified by a series of crossed molecular beam studies on the reactions of a C-H stretch-excited CHD3(v1 = 1) with F, Cl, and O(3P) atoms, two types of steric control of chemical reactivity will be highlighted. A passive control is governed in a reaction with strong anisotropic entry valley that can significantly steer the incoming trajectories. This disorientation effect is illustrated by the F and O(3P) + CHD3(v1 = 1) reactions. In the former case, the long-range anisotropic interaction acts like an optical "negative" lens by deflecting the trajectories away from the favored transition-state geometry, and thus inhibiting the bond rupture of the stretch-excited CHD3. On the contrary, the interaction between O(3P) and CHD3(v1 = 1) behaves as a "positive" lens by funneling the large impact-parameter collisions into the cone of acceptance, and thereby enhances the reactivity. As for reactions with relatively weak anisotropic interactions in the entry valley, an active control can be performed by exploiting the polarization property of the infrared excitation laser to polarize the reactants in space, as demonstrated in the reaction of Cl with a pre-aligned CHD3(v1 = 1) reactant. A simpler case, the end-on versus side-on collisions, will be elucidated for demonstrating a means to disentangle the impact-parameter averaging. A few general remarks about some closely related issues, such as mode-, bond-selectivity, and Polanyi's rules, are made.
CITATION STYLE
Liu, K. (2015). Perspective: Vibrational-induced steric effects in bimolecular reactions. Journal of Chemical Physics, 142(8). https://doi.org/10.1063/1.4913323
Mendeley helps you to discover research relevant for your work.