The Agulhas Current (AC) is a critical component of global ocean circulation. However, due to a lack of multidecadal observations, it is not clear how the AC has changed in response to anthropogenic forcing. A recent observational study suggests a broadening and slight weakening of the AC in the past few decades, while others suggest a strengthening of the AC during the historical period. In this paper, we find substantial internal variability of the AC on decadal to multidecadal time scales in high-resolution models. We show that the AC consistently exhibits two modes of decadal and multidecadal (i.e., low frequency) variability in a series of high-resolution climate models: a uniform mode that is largely associated with changes in the AC strength and a dipole mode that is mainly related to width changes of the AC. We demon-strate that the uniform mode is mainly forced externally by the decadal variations of the wind field and presents a decline under global warming, suggesting a weakening of the AC in response to anthropogenic forcing. The dipole mode, on the other hand, is mainly due to internal dynamics and does not show a trend during the historical period. Using a quasigeo-strophic model that captures the dipole mode, we attribute the dipole mode to low-frequency potential vorticity changes in the western boundary, driven by a divergence of relative potential vorticity due to eddy activity. Thus, our results present further context for the interpretation of the AC responses in a changing climate based on a short observational record.
CITATION STYLE
Zhang, R., Sun, S., Chen, Z., Yang, H., & Wu, L. (2023). On the Decadal and Multidecadal Variability of the Agulhas Current. Journal of Physical Oceanography, 53(4), 1011–1024. https://doi.org/10.1175/JPO-D-22-0123.1
Mendeley helps you to discover research relevant for your work.