In the present study, 4-methylpyridin-2-amine was reacted with 3-bromothiophene-2-carbaldehyde and the Schiff base (E)-1-(3-bromothiophen-2-yl)-N-(4-methylpyridin-2-yl) methanimine was obtained in a 79% yield. Coupling of the Schiff base with aryl/het-aryl boronic acids under Suzuki coupling reaction conditions, using Pd(PPh3)4 as catalyst, yielded products with the hydrolysis of the imine linkages (5a–5k, 6a–6h) in good to moderate yields. To gain mechanistic insight into the transition metal-catalyzed hydrolysis of the compounds, density functional theory (DFT) calculations were performed. The theoretical calculations strongly supported the experiment and provided an insight into the transition metal-catalyzed hydrolysis of imines.
CITATION STYLE
Ahmad, G., Rasool, N., Rizwan, K., Altaf, A. A., Rashid, U., Hussein, M. Z., … Ayub, K. (2019). Role of pyridine nitrogen in palladium-catalyzed imine hydrolysis: A Case Study of (E)-1-(3-bromothiophen-2-yl)-N-(4-methylpyridin-2-yl)methanimine. Molecules, 24(14). https://doi.org/10.3390/molecules24142609
Mendeley helps you to discover research relevant for your work.