Purpose Corporate social responsibility (CSR) is significant in the financial market. Despite plenty of existing research on CSR, few studies have quantified the fine-grained aspects of CSR and examined how diverse CSR aspects are associated with firms' trade credit. Based on the released CSR reports, this paper strives to measure the CSR fulfillment of firms and examine the relationships between CSR and trade credit in terms of textual features presented in these reports. Design/methodology/approach This research proposes a natural language processing-based framework to extract the overall readability and the sentiment of fine-grained aspects from CSR reports, which can signal the performance of firms' CSR in diverse aspects. Furthermore, this paper explores how the textual features are associated with trade credit through partial dependence plots (PDPs), and PDPs can generate both linear and nonlinear relationships. Findings The study’s results reveal that the overall readability of the reports is positively associated with trade credit, while the performance of the fine-grained CSR aspects mentioned in the CSR reports matters differently. The performance of the environment has a positive impact on trade credit; the performance of creditors, suppliers and information disclosure, shows a U-shaped influence on trade credit; while the performance of the government and customers is negatively associated with trade credit. Originality/value This study expands the scope of research on CSR and trade credit by investigating fine-grained aspects covered in CSR reports. It also offers some managerial implications in the allocation of CSR resources and the presentation of CSR reports.
CITATION STYLE
Ma, B., He, J., Yuan, H., Zhang, J., & Zhang, C. (2023). Corporate social responsibility and trade credit: the role of textual features. Journal of Electronic Business & Digital Economics, 2(1), 89–109. https://doi.org/10.1108/jebde-07-2022-0018
Mendeley helps you to discover research relevant for your work.