A central role for the armadillo protein plakoglobin in the autoimmune disease pemphigus vulgaris

168Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In pemphigus vulgaris (PV), autoantibody binding to desmoglein (Dsg) 3 induces loss of intercellular adhesion in skin and mucous membranes. Two hypotheses are currently favored to explain the underlying molecular mechanisms: (a) disruption of adhesion through steric hindrance, and (b) interference of desmosomal cadherin-bound antibody with intracellular events, which we speculated to involve plakoglobin. To investigate the second hypothesis we established keratinocyte cultures from plakoglobin knockout (PG-/-) embryos and PG+/+ control mice. Although both cell types exhibited desmosomal cadherin-mediated adhesion during calcium-induced differentiation and bound PV immunoglobin (IgG) at their cell surface, only PG+/+ keratinocytes responded with keratin retraction and loss of adhesion. When full-length plakoglobin was reintroduced into PG-/- cells, responsiveness to PV IgG was restored. Moreover, in these cells like in PG+/+ keratinocytes, PV IgG binding severely affected the linear distribution of plakoglobin at the plasma membrane. Taken together, the establishment of an in vitro model using PG+/+ and PG-/- keratinocytes allowed us (a) to exclude the steric hindrance only hypothesis, and (b) to demonstrate for the first time that plakoglobin plays a central role in PV, a finding that will provide a novel direction for investigations of the molecular mechanisms leading to PV, and on the function of plakoglobin in differentiating keratinocytes.

Cite

CITATION STYLE

APA

Caldelari, R., De Bruin, A., Baumann, D., Suter, M. M., Bierkamp, C., Balmer, V., & Müller, E. (2001). A central role for the armadillo protein plakoglobin in the autoimmune disease pemphigus vulgaris. Journal of Cell Biology, 153(4), 823–834. https://doi.org/10.1083/jcb.153.4.823

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free