Intercellular communication controls agonist-induced calcium oscillations independently of gap junctions in smooth muscle cells

14Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study, we report the existence of a communication system among human smooth muscle cells that uses mechanical forces to frequency modulate long-range calcium waves. An important consequence of this mechanical signaling is that changes in stiffness of the underlying extracellular matrix can interfere with the frequency modulation of Ca2+ waves, causing smooth muscle cells from healthy human donors to falsely perceive a much higher agonist dose than they actually received. This aberrant sensing of contractile agonist dose on stiffer matrices is completely absent in isolated smooth muscle cells, although the isolated cells can sense matrix rigidity. We show that the intercellular communication that enables this collective Ca2+ response in smooth muscle cells does not involve transport across gap junctions or extracellular diffusion of signaling molecules. Instead, our data support a collective model in which mechanical signaling among smooth muscle cells regulates their response to contractile agonists.

Cite

CITATION STYLE

APA

Stasiak, S. E., Jamieson, R. R., Bouffard, J., Cram, E. J., & Parameswaran, H. (2020). Intercellular communication controls agonist-induced calcium oscillations independently of gap junctions in smooth muscle cells. Science Advances, 6(32). https://doi.org/10.1126/sciadv.aba1149

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free