Selenium-enriched Agaricus bisporus mushroom protects against increase in gut permeability ex vivo and up-regulates glutathione peroxidase 1 and 2 in hyperthermally-induced oxidative stress in rats

24Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

Abstract

Dietary effects of organic Se supplementation in the form of Se-enriched Agaricus bisporus mushroom on ileal mucosal permeability and antioxidant selenoenzymes status in heat induced oxidative stress in rats were evaluated. Acute heat stress (40 °C, 21% relative humidity, 90 min exposure) increased ileum baseline short circuit current (Isc; 2.40-fold) and epithelial conductance (Ge; 2.74-fold). Dietary supplementation with Se-enriched A. bisporus (1 μg Se/g feed) reduced (p < 0.05) ileum Isc and Ge during heat stress to 1.74 and 1.91 fold, respectively, indicating protection from heat stress-induced mucosal permeability increase. The expression of ileum glutathione peroxidase (GPx-) 1 and 2 mRNAs were up-regulated (p < 0.05) by 1.90 and 1.87-fold, respectively, for non-heat stress rats on the Se-enriched diet relative to the control. The interplay between heat stress and dietary Se is complex. For rats on the control diet, heat stress alone increased ileum expression of GPx-1 (2.33-fold) and GPx-2 (2.23-fold) relative to thermoneutral conditions. For rats on the Se-enriched diet, heat stress increased (p < 0.05) GPx-1 expression only. Rats on Se-enriched + α-tocopherol diet exhibited increased expression of both genes (p < 0.05). Thus, dietary Se-enriched A. bisporus protected against increase in ileum permeability and up-regulated GPx-1 and GPx-2 expression, selenoenzymes relevant to mitigating oxidative stress. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Cite

CITATION STYLE

APA

Maseko, T., Dunshea, F. R., Howell, K., Cho, H. J., Rivera, L. R., Furness, J. B., & Ng, K. (2014). Selenium-enriched Agaricus bisporus mushroom protects against increase in gut permeability ex vivo and up-regulates glutathione peroxidase 1 and 2 in hyperthermally-induced oxidative stress in rats. Nutrients, 6(6), 2478–2492. https://doi.org/10.3390/nu6062478

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free