Integrated processing of muon radiography and gravity anomaly data toward the realization of high-resolution 3-D density structural analysis of volcanoes: Case study of Showa-Shinzan lava dome, Usu, Japan

57Citations
Citations of this article
47Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We have developed an integrated processing method for muon radiography and gravity anomaly data for determining the 3-D density structures of volcanoes with a higher spatial resolution than is possible by conventional gravity inversion. In the present paper, we demonstrate the performance of the proposed method by performing numerical tests using synthesized data, and we present the results obtained by applying the proposed method to a volcano, Showa-Shinzan lava dome, Hokkaido, Japan. We obtained the detailed shape of a vent beneath the dome and detected the presence of solidified dense lava near the top of the dome. The results demonstrate the advantage of a hybrid measurement based on both gravity and muon radiography for imaging small structures with sizes of a few hundreds of meters near the surface of a volcano. ©2013. American Geophysical Union. All Rights Reserved.

Cite

CITATION STYLE

APA

Nishiyama, R., Tanaka, Y., Okubo, S., Oshima, H., Tanaka, H. K. M., & Maekawa, T. (2014). Integrated processing of muon radiography and gravity anomaly data toward the realization of high-resolution 3-D density structural analysis of volcanoes: Case study of Showa-Shinzan lava dome, Usu, Japan. Journal of Geophysical Research: Solid Earth, 119(1), 699–710. https://doi.org/10.1002/2013JB010234

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free