Diseño de redes neuronales con aprendizaje combinado de retropropagación y búsqueda aleatoria progresiva aplicado a la determinación de austenita retenida en aceros TRIP

1Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

At the beginning of the decade of the nineties, the industrial interest for TRIP steels leads to a significant increase of the investigation and application in this field. In this work, the flexibility of neural networks for the modelling of complex properties is used to tackle the problem of determining the retained austenite content in TRIP-steel. Applying a combination of two learning algorithms (backpropagation and creeping-random-search) for the neural network, a model has been created that enables the prediction of retained austenite in low-Si / low-Al multiphase steels as a function of processing parameters.

Cite

CITATION STYLE

APA

Toda-Caraballo, I., Garcia-Mateo, C., & Capdevila, C. (2010). Diseño de redes neuronales con aprendizaje combinado de retropropagación y búsqueda aleatoria progresiva aplicado a la determinación de austenita retenida en aceros TRIP. Revista de Metalurgia (Madrid), 46(6), 499–510. https://doi.org/10.3989/revmetalmadrid.0924

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free