Photolithography for patterns with periodicity in the illumination plane (2.5-D lithography) has seen rapid advances over the past decade, with the introduction of holographic lithography and the further development of phase-contrast and grayscale photolithography methods. However, each of these techniques suffers from substantial difficulties preventing further integration into device fabrication: a lack of parallel processing capabilities and dimension limitations. Here, we present a demonstration of controlled layer topography through modulation of both the exposure dose and exposure focal plane yielding reproducible 2.5-D patterns which are applied to the further development of plasmonic gratings. This process is entirely compatible with commercially available i-line photolithography and etch hardware, enabling a path to ready integration.
CITATION STYLE
Penkov, B., Bordonaro, G., Golovin, A. B., Bendoym, I., Tennant, D. M., & Crouse, D. T. (2013). Periodic patterning using aerial image modulation with optical lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS, 12(3), 033009. https://doi.org/10.1117/1.jmm.12.3.033009
Mendeley helps you to discover research relevant for your work.