Satellitome analysis of the pacific oyster crassostrea gigas reveals new pattern of satellite dna organization, highly scattered across the genome

12Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Several features already qualified the invasive bivalve species Crassostrea gigas as a valuable non-standard model organism in genome research. C. gigas is characterized by the low contribution of satellite DNAs (satDNAs) vs. mobile elements and has an extremely low amount of heterochromatin, predominantly built of DNA transposons. In this work, we have identified 52 satDNAs compos-ing the satellitome of C. gigas and constituting about 6.33% of the genome. Satellitome analysis reveals unusual, highly scattered organization of relatively short satDNA arrays across the whole genome. However, peculiar chromosomal distribution and densities are specific for each satDNA. The inspection of the organizational forms of the 11 most abundant satDNAs shows association with constitutive parts of Helitron mobile elements. Nine of the inspected satDNAs are dominantly found in mobile element-associated form, two mostly appear standalone, and only one is present exclusively as Helitron-associated sequence. The Helitron-related satDNAs appear in more chromosomes than other satDNAs, indicating that these mobile elements could be leading satDNA propagation in C. gigas. No significant accumulation of satDNAs on certain chromosomal positions was detected in C. gigas, thus establishing a novel pattern of satDNA organization on the genome level.

Cite

CITATION STYLE

APA

Tunjić-Cvitanić, M., Pasantes, J. J., García-Souto, D., Cvitanić, T., Plohl, M., & Šatović-Vukšić, E. (2021). Satellitome analysis of the pacific oyster crassostrea gigas reveals new pattern of satellite dna organization, highly scattered across the genome. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/ijms22136798

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free