Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation

187Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In order to assess the potential of embryonic stem cells to undergo neuronal differentiation in vivo, totipotent stem cells from mouse blastocysts (D3 and E14TG2a; previously expanded in the presence of leukemia inhibitory factor) were transplanted, with or without retinoic acid pretreatment, into adult mouse brain, adult lesioned rat brain, and into the mouse kidney capsule. Intracerebral grafts survived in 61% of cyclosporine immunosuppressed rats and 10.0% of mouse hosts, exhibited variable size and morphology, and both intracerebral and kidney capsule grafts developed large numbers of cells exhibiting neuronal morphology and immunoreactivity for neurofilament, neuron-specific enolase, tyrosine hydroxylase (TH), 5- hydroxytrytamine (5-HT), and cells immunoreactive for glial fibrillary acidic protein. Though graft size and histology were variable, typical grafts of 5- 10 mm3 contained 10-20,000 TH+ neurons, whereas dopamine-β-hydroxylase+ cells were rare. Most grafts also included nonneuronal regions. In intracerebral grafts, large numbers of astrocytes immunoreactive for glial fibrillary acidic protein were present. Both TH+ and 5-HT+ axons from intracerebral grafts grew into regions of the dopamine-lesioned host striatum. TH+ axons grew preferentially into striatal gray matter, while 5- HT+ axons showed no white/gray matter preference. These findings demonstrate that transplantation to the brain or kidney capsule can induce a significant fraction of totipotent embryonic stem cells to become putative dopaminergic or serotonergic neurons and that when transplanted to the brain these neurons are capable of innervating the adult host striatum.

Cite

CITATION STYLE

APA

Deacon, T., Dinsmore, J., Costantini, L. C., Ratliff, J., & Isacson, O. (1998). Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Experimental Neurology, 149(1), 28–41. https://doi.org/10.1006/exnr.1997.6674

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free