Simvastatin inhibits toll-like receptor 8 (TLR8) signaling in primary human monocytes and spontaneous tumor necrosis factor production from rheumatoid synovial membrane cultures

8Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Simvastatin has been shown to have antiinflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these antiinflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on toll-like receptor (TLR) signaling in primary human monocytes was investigated. A short pretreatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor (TNF)-α in response to TLR8 activation (but not TLR2, -4 or -5). Statins are known inhibitors of the cholesterol biosynthetic pathway, but, intriguingly, TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate, downstream products of cholesterol biosynthesis. TLR8 signaling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited I kappa B kinase (IKK)α/β phosphorylation and subsequent nuclear factor (NF)-κB activation without affecting the pathway to activating protein-1 (AP-1). Because simvastatin has been reported to have antiinflammatory effects in RA patients and TLR8 signaling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model, which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signaling that may in part explain its beneficial antiinflammatory effects.

Cite

CITATION STYLE

APA

Mullen, L., Ferdjani, J., & Sacre, S. (2015). Simvastatin inhibits toll-like receptor 8 (TLR8) signaling in primary human monocytes and spontaneous tumor necrosis factor production from rheumatoid synovial membrane cultures. Molecular Medicine, 21, 726–734. https://doi.org/10.2119/molmed.2015.00154

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free