Exploring hyperoxia effects in cancer—From perioperative clinical data to potential molecular mechanisms

6Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Increased inspiratory oxygen concentration is constantly used during the perioperative period of cancer patients to prevent the potential development of hypoxemia and to provide an adequate oxygen transport to the organs, tissues and cells. Although the primary tumours are surgically removed, the effects of perioperative hyperoxia exposure on distal micro-metastases and on circulating cancer cells can potentially play a role in cancer progression or recurrence. In clinical trials, hyperoxia seems to increase the rate of postoperative complications and, by delaying postoperative recovery, it can alter the return to intended oncological treatment. The effects of supplemental oxygen on the long-term mortality of surgical cancer patients offer, at this point, conflicting results. In experimental studies, hyperoxia effects on cancer biology were explored following multiple pathways. In cancer cell cultures and animal models, hyperoxia increases the production of reactive oxygen species (ROS) and increases the oxidative stress. These can be followed by the induction of the expression of Brain-derived neurotrophic factor (BDNF) and other molecules involved in angiogenesis and by the promotion of various degrees of epithelial mesenchymal transition (EMT).

Cite

CITATION STYLE

APA

Ristescu, A. I., Tiron, C. E., Tiron, A., & Grigoras, I. (2021, September 1). Exploring hyperoxia effects in cancer—From perioperative clinical data to potential molecular mechanisms. Biomedicines. MDPI. https://doi.org/10.3390/biomedicines9091213

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free