A new nanoporous biomatrix originated from bacterial resources has been chosen for urease immobilization. Urease has been immobilized on synthesized bacterial cellulose nanofiber since this enzyme has a key role in nitrogen metabolism. Gluconacetobacter xylinum ATCC 10245 has been cultivated for synthesis of a nanofiber with the diameter of 30-70 nm. Different cultivation processes in the aspect of time and cultivation medium conditions were chosen to study the performance of immobilized enzyme on four types of bacterial cellulose nanofibers (BCNs). Urease immobilization into the nanofiber has been done in two steps: enzyme adsorption and glutaraldehyde cross-linking. The results showed that the immobilized enzymes were relatively active and highly stable compared to the control samples of free enzymes. Optimum pH was obtained 6.5 and 7 for different synthesized BCNs, while the optimum temperature for immobilized urease was 50°C. Finding of the current experiment illustrated that the immobilized enzyme in optimum condition lost its initial activity by 41% after 15 weeks.
CITATION STYLE
Pesaran, M., Amoabediny, G., & Yazdian, F. (2015). Effect of cultivation time and medium condition in production of bacterial cellulose Nanofiber for Urease immobilization. International Journal of Polymer Science, 2015. https://doi.org/10.1155/2015/270501
Mendeley helps you to discover research relevant for your work.