We investigated the role of extraretinal information in the perception of absolute distance. In a computer-simulated environment, monocular observers judged the distance of objects positioned at different locations in depth while performing frontoparallel movements of the head. The objects were spheres covered with random dots subtending three different visual angles. Observers viewed the objects at eye level, either in isolation or superimposed on a ground floor. The distance and size of the spheres were covaried to suppress relative size information. Hence, the main cues to distance were the motion parallax and the extraretinal signals. In three experiments, we found evidence that (1) perceived distance is correlated with simulated distance in terms of precision and accuracy, (2) the accuracy in the distance estimate is slightly improved by the presence of a ground-floor surface, (3) the perceived distance is not altered significantly when the visual field size increases, and (4) the absolute distance is estimated correctly during self-motion. Conversely, stationary subjects failed to report absolute distance when they passively observed a moving object producing the same retinal stimulation, unless they could rely on knowledge of the three-dimensional movements.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Panerai, F., Cornilleau-Pérès, V., & Droulez, J. (2002). Contribution of extraretinal signals to the scaling of object distance during self-motion. Perception and Psychophysics, 64(5), 717–731. https://doi.org/10.3758/BF03194739