Interphase precipitation of vanadium carbide (VC) accompanying ferrite and pearlite transformations and its effect on hardness have been examined by using medium carbon steels containing 0.1, 0.3 and 0.5 mass%V. Specimens transformed in a temperature range between 873 and 973 K consist of pearlite and small amount of proeutectoid ferrite. Ferrite fraction increases with raising transformation temperature or with increasing the V content. In addition to proeutectoid ferrite and pearlite, bainite is formed below 853 K, whose fraction is increased by the V addition. Hardening is significant in the V-added alloy between 873 K and 973 K and becomes larger by increasing V content in this temperature range. Meanwhile the alloying effect of V on the hardness remarkably decreases at 823 K where bainite transformation takes place partly. TEM characterization has revealed that VC are precipitated in both of proeutectoid and pearlitic ferrite with holding Baker-Nutting (B-N) orientation relationship with ferrite in the manner of fine rows parallel to the austenite / ferrite interphase boundary. Single variant of VC, whose habit plane is closer to ferrite / austenite boundary than the other two B-N variants, tends to be formed. The size of VC decreases and its number density increases by lowering transformation temperature, corresponding to the larger hardness increase. © 2011 ISIJ.
CITATION STYLE
Miyamoto, G., Hori, R., Poorganji, B., & Furuhara, T. (2011). Interphase precipitation of VC and resultant hardening in V-added medium carbon steels. ISIJ International, 51(10), 1733–1739. https://doi.org/10.2355/isijinternational.51.1733
Mendeley helps you to discover research relevant for your work.