Once Aedes aegypti and Aedes albopictus mosquitoes that spread Chikungunya virus, dengue virus, and Zika virus are infected with Wolbachia, they have reduced egg laying rates, reduced transmission abilities, and shorter lifespans. Since most infected mosquitoes are only infectious in the last few days of their lives, shortening a mosquito’s lifespan by a day or two can greatly reduce their abilities to spread mosquito-borne viral diseases, such as Chikungunya, dengue fever, and Zika. We developed a mathematical model to compare the effectiveness of the wMel and wAlbB strains of Wolbachia for controlling the spread of these viruses. The differences among the diseases, mosquitoes, and Wolbachia strains are captured by the model parameters for the mosquito-human transmission cycle. Moreover, the model accounts for the behavior changes of infectious population created by differences in the malaise caused by these viruses. We derived the effective and basic reproduction numbers for the model that are used to estimate the number of secondary infections from the infectious populations. In the same density of Wolbachia-free Aedes aegypti or Aedes albopictus mosquitoes, we observed that wMel and wAlbB strains of Wolbachia can reduce the transmission rates of these diseases effectively.
CITATION STYLE
Xue, L., Fang, X., & Hyman, J. M. (2018). Comparing the effectiveness of different strains of Wolbachia for controlling chikungunya, dengue fever, and zika. PLoS Neglected Tropical Diseases, 12(7). https://doi.org/10.1371/journal.pntd.0006666
Mendeley helps you to discover research relevant for your work.