The chemical and electrical microenvironment of neurons within the central nervous system is protected and segregated from the circulation by the vascular blood-brain barrier. This barrier operates on the level of endothelial cells and includes regulatory crosstalk with neighbouring pericytes, astrocytes and neurons. Within this neurovascular unit, the endothelial cells form a formidable, highly regulated barrier through the presence of inter-endothelial tight junctions, the absence of fenestrations, and the almost complete absence of fluidphase transcytosis. The potent psychostimulant drug methamphetamine transiently opens the vascular blood-brain barrier through either or both the modulation of inter-endothelial junctions and the induction of fluid-phase transcytosis. Direct action of methamphetamine on the vascular endothelium induces acute opening of the blood-brain barrier. In addition, striatal effects of methamphetamine and resultant neuroinflammatory signalling can indirectly lead to chronic dysfunction of the blood-brain barrier. Breakdown of the bloodbrain barrier may exacerbate the neuronal damage that occurs during methamphetamine abuse. However, this process also constitutes a rare example of agonist-induced breakdown of the blood-brain barrier and the adjunctive use of methamphetamine may present an opportunity to enhance delivery of chemotherapeutic agents to the underlying neural tissue.
CITATION STYLE
Turowski, P., & Kenny, B. A. (2015). The blood-brain barrier and methamphetamine: Open sesame? Frontiers in Neuroscience. Frontiers Research Foundation. https://doi.org/10.3389/fnins.2015.00156
Mendeley helps you to discover research relevant for your work.