Diversification of land plants: Insights from a family-level phylogenetic analysis

Citations of this article
Mendeley users who have this article in their library.


ABSTRACT: BACKGROUND: Some of the evolutionary history of land plants has been documented based on the fossil record and a few broad-scale phylogenetic analyses, especially focusing on angiosperms and ferns. Here, we reconstructed phylogenetic relationships among all 706 families of land plants using molecular data. We dated the phylogeny using multiple fossils and a molecular clock technique. Applying various tests of diversification that take into account topology, branch length, numbers of extant species as well as extinction, we evaluated diversification rates through time. We also compared these diversification profiles against the distribution of the climate modes of the Phanerozoic. RESULTS: We found evidence for the radiations of ferns and mosses in the shadow of angiosperms coinciding with the rather warm Cretaceous global climate. In contrast, gymnosperms and liverworts show a signature of declining diversification rates during geological time periods of cool global climate. CONCLUSIONS: This broad-scale phylogenetic analysis helps to reveal the successive waves of diversification that made up the diversity of land plants we see today. Both warm temperatures and wet climate may have been necessary for the rise of the diversity under a successive lineage replacement scenario.




Fiz-Palacios, O., Schneider, H., Heinrichs, J., & Savolainen, V. (2011). Diversification of land plants: Insights from a family-level phylogenetic analysis. BMC Evolutionary Biology, 11(1). https://doi.org/10.1186/1471-2148-11-341

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free