Domain Watcher: Detecting Malicious Domains Based on Local and Global Textual Features

2Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Malicious domains usually refer to a series of illegal activities, posing threats to people's privacy and property. Therefore, the problem of detecting malicious domains has aroused the widespread concern. This paper introduces a novel approach named Domain Watcher to detect malicious domains based on local and global textual features. Except for the traditional lexical features of domains, we introduce two types of global textual features, namely imitation features and bigram features, by measuring the similarity between tested domains and known domains. Experimental results on real-world data show that DomainWatcher can achieve high precision rate, recall rate and F1-measure with low consumption.

Cite

CITATION STYLE

APA

Zhang, P., Liu, T., Zhang, Y., Ya, J., Shi, J., & Wang, Y. (2017). Domain Watcher: Detecting Malicious Domains Based on Local and Global Textual Features. In Procedia Computer Science (Vol. 108, pp. 2408–2412). Elsevier B.V. https://doi.org/10.1016/j.procs.2017.05.204

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free