Effectiveness of structural restrictions for hybrid CSPs

6Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Constraint Satisfaction Problem (CSP) is a fundamental algorithmic problem that appears in many areas of Computer Science. It can be equivalently stated as computing a homomorphism R → Γ between two relational structures, e.g. between two directed graphs. Analyzing its complexity has been a prominent research direction, especially for the fixed template CSPs where the right side Γ is fixed and the left side R is unconstrained. Far fewer results are known for the hybrid setting that restricts both sides simultaneously. It assumes that R belongs to a certain class of relational structures (called a structural restriction in this paper). We study which structural restrictions are effective, i.e. there exists a fixed template Γ (from a certain class of languages) for which the problem is tractable when R is restricted, and NP-hard otherwise. We provide a characterization for structural restrictions that are closed under inverse homomorphisms. The criterion is based on the chromatic number of a relational structure defined in this paper; it generalizes the standard chromatic number of a graph. As our main tool, we use the algebraic machinery developed for fixed template CSPs. To apply it to our case, we introduce a new construction called a “lifted language”. We also give a characterization for structural restrictions corresponding to minor-closed families of graphs, extend results to certain Valued CSPs (namely conservative valued languages), and state implications for (valued) CSPs with ordered variables and for the maximum weight independent set problem on some restricted families of graphs.

Cite

CITATION STYLE

APA

Kolmogorov, V., Rolínek, M., & Takhanov, R. (2015). Effectiveness of structural restrictions for hybrid CSPs. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9472, pp. 566–577). Springer Verlag. https://doi.org/10.1007/978-3-662-48971-0_48

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free