Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry

2Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Transabdominal fetal pulse oximetry is a method to monitor the oxygen supply of the unborn child non-invasively. Due to the measurement setup, the received signal of the detector is composed of photons coding purely maternal and photons coding mixed fetal-maternal information. To analyze the wellbeing of the fetus, the fetal signal is extracted from the mixed component. In this paper we assess source-detector configurations, such that the mixed fetal-maternal components of the acquired signals are maximized. Monte-Carlo method is used to simulate light propagation and photon distribution in tissue. We use a plane layer and a spherical layer geometry to model the abdomen of a pregnant woman. From the simulations we extracted the fluence at the detector side for several source-detector distances and analyzed the ratio of the mixed fluence component to total fluence. Our simulations showed that the power of the mixed component depends on the source-detector distance as expected. Further we were able to visualize hot spot areas in the spherical layer model where the mixed fluence ratio reaches the highest level. The results are of high importance for sensor design considering signal composition and quality for non-invasive fetal pulse oximetry.

Cite

CITATION STYLE

APA

Böttrich, M., Ley, S., & Husar, P. (2015). Simulation based investigation of source-detector configurations for non-invasive fetal pulse oximetry. In Current Directions in Biomedical Engineering (Vol. 1, pp. 450–453). Walter de Gruyter GmbH. https://doi.org/10.1515/cdbme-2015-0108

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free