The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge)

39Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Yellowhorn (Xanthoceras sorbifolium Bunge), a deciduous shrub or small tree native to north China, is of great economic value. Seeds of yellowhorn are rich in oil containing unsaturated long-chain fatty acids that have been used for producing edible oil and nervonic acid capsules. However, the lack of a high-quality genome sequence hampers the understanding of its evolution and gene functions. Findings: In this study, a whole genome of yellowhorn was sequenced and assembled by integration of Illumina sequencing, Pacific Biosciences single-molecule real-time sequencing, 10X Genomics linked reads, Bionano optical maps, and Hi-C. The yellowhorn genome assembly was 439.97 Mb, which comprised 15 pseudo-chromosomes covering 95.42% (419.84 Mb) of the assembled genome. The repetitive fractions accounted for 56.39% of the yellowhorn genome. The genome contained 21,059 protein-coding genes. Of them, 18,503 (87.86%) genes were found to be functionally annotated with ≥1 "annotation" term by searching against other databases. Transcriptomic analysis showed that 341, 135, 125, 113, and 100 genes were specifically expressed in hermaphrodite flower, staminate flower, young fruit, leaf, and shoot, respectively. Phylogenetic analysis suggested that yellowhorn and Dimocarpus longan diverged from their most recent common ancestor ∼46 million years ago. Conclusions: The availability and subsequent annotation of the yellowhorn genome, as well as the identification of tissue-specific functional genes, provides a valuable reference for plant comparative genomics, evolutionary studies, and molecular design breeding.

Cite

CITATION STYLE

APA

Liang, Q., Li, H., Li, S., Yuan, F., Sun, J., Duan, Q., … Yang, L. (2019). The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge). GigaScience, 8(6). https://doi.org/10.1093/gigascience/giz071

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free