Covalent organic frameworks as micro-reactors: Confinement-enhanced electrochemiluminescence

77Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Electrochemiluminescence (ECL) micro-reactors with enhanced intensity and extreme stability were first established by the assembly of tris(2,2′-bipyridyl) ruthenium(ii) (Ru(bpy)32+) onto covalent organic frameworks (COFs), in which a type of imine-linked COF (denoted as COF-LZU1) was employed as a model for ECL micro-reactors. Compared with the dominant ECL system of Ru(bpy)32+/tri-n-propylamine (TPrA) (TPrA as a co-reactant), the intensity of the COF-LZU1 micro-reactor-based electrode was significantly increased nearly 5-fold under the same experimental conditions, which is unprecedented in other Ru(bpy)32+-based ECL systems. This enhancement can be attributed to the large surface area, delimited space, and stable and hydrophobic porous structure of COF-LZU1, which not only enabled a huge amount of Ru(bpy)32+to be loaded in/on COF-LZU1, but also enriched a large amount of TPrA from the aqueous solution into its inner hydrophobic cavity due to the lipophilicity of TPrA. More importantly, with its hydrophobic porous nanochannels, COF-LZU1 could act as micro-reactors to provide a delimited reaction micro-environment for the electrochemical oxidation of TPrA and the survival of TPrA˙, achieving significant confinement-enhanced ECL. To prove this principle, these Ru@COF-LZU1 micro-reactors were developed to prepare an ECL aptasensor for aflatoxin M1 (AFM1) detection with a wide detection range and a low detection limit. Overall, this work is the first report in which ECL micro-reactors are constructed with COFs to enhance the intensity and stability of the Ru(bpy)32+-based ECL system, and opens a new route to the design of other ECL micro-reactors for bioanalysis applications.

Cite

CITATION STYLE

APA

Zeng, W. J., Wang, K., Liang, W. B., Chai, Y. Q., Yuan, R., & Zhuo, Y. (2020). Covalent organic frameworks as micro-reactors: Confinement-enhanced electrochemiluminescence. Chemical Science, 11(21), 5410–5414. https://doi.org/10.1039/d0sc01817a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free