The apolipoprotein E4 (APOE4) allele represents the single greatest risk factor for late-onset Alzheimer's disease (AD) and accumulating evidence suggests that fragmentation with a toxic gain of function may be a key molecular step associated with this risk. Recently, we demonstrated strong immunoreactivity of a 151 amino-terminal fragment of apoE4 (E4-fragment) within the nucleus of microglia in the human AD brain. In vitro, this fragment led to toxicity and activation of inflammatory processes in BV2 microglia cells. Additionally, a transcriptome analysis following exogenous treatment of BV2 microglia cells with this E4 fragment led to a > 2-fold up regulation of 1,608 genes, with many genes playing a role in inflammation and microglia activation. To extend these findings, we here report a similar transcriptome analysis in BV2 microglia cells following treatment with full-length ApoE4 (FL-ApoE4). The results indicated that full-length ApoE4 had a very small effect on gene expression compared to the fragment. Only 48 differentially expressed genes (DEGs) were identified (p < 0.05, and greater than 2-fold change). A gene ontology analysis of these DEGs indicated that they are not involved in inflammatory and activation processes, in contrast to the genes up regulated by the E4-fragment. In addition, genes that showed a negative fold-change upon FL-E4 treatment typically showed a strong positive fold-change upon treatment with the fragment (Pearson's r = −0.7). Taken together, these results support the hypothesis that a key step in the conversion of microglia to an activated phenotype is proteolytic cleavage of FL-ApoE4. Therefore, the neutralization of this amino-terminal fragment of ApoE4, specifically, may serve as an important therapeutic strategy in the treatment of AD.
CITATION STYLE
Rohn, T. T., Beck, J. D., Galla, S. J., Isho, N. F., Pollock, T. B., Suresh, T., … Hayden, E. J. (2021). Fragmentation of Apolipoprotein E4 is Required for Differential Expression of Inflammation and Activation Related Genes in Microglia Cells. International Journal of Neurodegenerative Disorders, 4(1). https://doi.org/10.23937/2643-4539/1710020
Mendeley helps you to discover research relevant for your work.