Singlet exciton fission in a modified acene with improved stability and high photoluminescence yield

29Citations
Citations of this article
75Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We report a fully efficient singlet exciton fission material with high ambient chemical stability. 10,21-Bis(triisopropylsilylethynyl)tetrabenzo[a,c,l,n]pentacene (TTBP) combines an acene core with triphenylene wings that protect the formal pentacene from chemical degradation. The electronic energy levels position singlet exciton fission to be endothermic, similar to tetracene despite the triphenylenes. TTBP exhibits rapid early time singlet fission with quantitative yield of triplet pairs within 100 ps followed by thermally activated separation to free triplet excitons over 65 ns. TTBP exhibits high photoluminescence quantum efficiency, close to 100% when dilute and 20% for solid films, arising from triplet-triplet annihilation. In using such a system for exciton multiplication in a solar cell, maximum thermodynamic performance requires radiative decay of the triplet population, observed here as emission from the singlet formed by recombination of triplet pairs. Combining chemical stabilisation with efficient endothermic fission provides a promising avenue towards singlet fission materials for use in photovoltaics.

Cite

CITATION STYLE

APA

Budden, P. J., Weiss, L. R., Müller, M., Panjwani, N. A., Dowland, S., Allardice, J. R., … Friend, R. H. (2021). Singlet exciton fission in a modified acene with improved stability and high photoluminescence yield. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-21719-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free