We present a systematic search for short-duration gamma-ray bursts (GRBs) in the local Universe based on 14 yr of observations with the Neil Gehrels Swift Observatory. We cross-correlate the GRB positions with the GLADE catalogue of nearby galaxies, and find no event at a distance ≲100 Mpc and four plausible candidates in the range 100 Mpc ≲ D ≲ 200 Mpc. Although affected by low statistics, this number is higher than the one expected for chance alignments to random galaxies, and possibly suggests a physical association between these bursts and nearby galaxies. By assuming a local origin, we use these events to constrain the range of properties for X-ray counterparts of neutron star mergers. Optical upper limits place tight constraints on the onset of a blue kilonova, and imply either low masses (≲ 10−3 M☉) of lanthanide-poor ejecta or unfavorable orientations (θobs ≳ 30 deg). Finally, we derive that the all-sky rate of detectable short GRBs within 200 Mpc is 1.3+1.7−0.8 yr−1 (68 per cent confidence interval), and discuss the implications for the GRB outflow structure. If these candidates are instead of cosmological origin, we set a upper limit of ≲2.0 yr−1 (90 per cent confidence interval) to the rate of nearby events detectable with operating gamma-ray observatories, such as Swift and Fermi.
CITATION STYLE
Dichiara, S., Troja, E., O’Connor, B., Marshall, F. E., Beniamini, P., Cannizzo, J. K., … Sakamoto, T. (2020). Short gamma-ray bursts within 200 Mpc. Monthly Notices of the Royal Astronomical Society, 492(4), 5011–5022. https://doi.org/10.1093/MNRAS/STAA124
Mendeley helps you to discover research relevant for your work.