The capacity of (CTG-CAG)n and (GAA-TTC)n repeat tracts in plasmids to induce mutations in DNA flanking regions was evaluated in Escherichia coli. Long repeats of these sequences are involved in the etiology of myotonic dystrophy type 1 and Friedreich's ataxia, respectively. Long (CTG-CAG)n (where n = 98 and 175) caused the deletion of most, or all, of the repeats and the flanking GFP gene. Deletions of 0.6-1.8 kbp were found as well as inversions. Shorter repeat tracts (where re = 0 or 17) were essentially inert, as observed for the (GAA-TTC)176-containing plasmid. The orientation of the triplet repeat sequence (TRS) relative to the unidirectional origin of replication had a pronounced effect, signaling the participation of replication and/or repair systems. Also, when the TRS was transcribed, the level of deletions was greatly elevated. Under certain conditions, 30-50% of the products contained gross deletions. DNA sequence analyses of the breakpoint junctions in 47 deletions revealed the presence of 1-8-bp direct or inverted homologies in all cases. Also, the presence of non-B folded conformations (i.e. slipped structures, cruciforms, or triplexes) at or near the breakpoints was predicted in all cases. This genetic behavior, which was previously unrecognized for a TRS, may provide the basis for a new type of instability of the myotonic dystrophy protein kinase (DMPK) gene in patients with a full mutation.
CITATION STYLE
Wojciechowska, M., Bacolla, A., Larson, J. E., & Wells, R. D. (2005). The myotonic dystrophy type 1 triplet repeat sequence induces gross deletions and inversions. Journal of Biological Chemistry, 280(2), 941–952. https://doi.org/10.1074/jbc.M410427200
Mendeley helps you to discover research relevant for your work.