Background: The functional contribution of non-myocyte cardiac cells, such as inflammatory cells, in the setup of heart failure in response to doxorubicin (Dox) is recently becoming of growing interest. Objectives: The study aims to evaluate the role of macrophages in cardiac damage elicited by Dox treatment. Methods: C57BL/6 mice were treated with one intraperitoneal injection of Dox (20 mg/kg) and followed up for 5 days by cardiac ultrasounds (CUS), histological, and flow cytometry evaluations. We also tested the impact of Dox in macrophage-depleted mice. Rat cardiomyoblasts were directly treated with Dox (D-Dox) or with a conditioned medium from cultured murine macrophages treated with Dox (M-Dox). Results: In response to Dox, macrophage infiltration preceded cardiac damage. Macrophage depletion prevents Dox-induced damage, suggesting a key role of these cells in promoting cardiotoxicity. To evaluate the crosstalk between macrophages and cardiac cells in response to DOX, we compared the effects of D-Dox and M-Dox in vitro. Cell vitality was lower in cardiomyoblasts and apoptosis was higher in response to M-Dox compared with D-Dox. These events were linked to p53-induced mitochondria morphology, function, and autophagy alterations. We identify a mechanistic role of catecholamines released by Dox-activated macrophages that lead to mitochondrial apoptosis of cardiac cells through β-AR stimulation. Conclusions: Our data indicate that crosstalk between macrophages and cardiac cells participates in cardiac damage in response to Dox. Graphical abstract: [Figure not available: see fulltext.]
CITATION STYLE
Gambardella, J., Santulli, G., Fiordelisi, A., Cerasuolo, F. A., Wang, X., Prevete, N., … Sorriento, D. (2023). Infiltrating macrophages amplify doxorubicin-induced cardiac damage: role of catecholamines. Cellular and Molecular Life Sciences, 80(11). https://doi.org/10.1007/s00018-023-04922-5
Mendeley helps you to discover research relevant for your work.