Evaluation of a modified receptor model for solving multiple time resolution equations: A simulation study

22Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

This study was conducted to evaluate the performance of an improved source apportionment model that is suitable for incorporating data with multiple time resolutions. This evaluation was achieved by using synthetic data sets that simulated environmental concentrations of volatile organic compounds (VOCs) and fine particulate matter (PM 2.5) from the five following sources: petroleum refinery, vehicle exhaust, industrial coating, coal combustion, and natural gas. Hourly VOCs and speciated PM2.5 data were simulated for a one-week period. The PM2.5 data were further averaged every twelve hours to generate data sets with mixed temporal resolutions. The Multilinear Engine program was applied to resolve the source profiles and contributions. A series of sensitivity analyses was conducted to examine how uncertainties in the profile variation, measurement error, and source collinearity affected the model performance. The resolved factor profiles closely matched the input profiles, and the measurement error had a larger impact on the modeling results than the profile variation. In the most comprehensive data set that contained all three types of uncertainty, the R2 values between the input and retrieved source contributions were between 0.87 and 0.95. The estimated percentage contributions were also comparable with the input ones, demonstrating the applicability and validity of this improved model. © Taiwan Association for Aerosol Research.

Cite

CITATION STYLE

APA

Wu, C. F., Liao, H. T., Kuo, C. P., & Hopke, P. K. (2013). Evaluation of a modified receptor model for solving multiple time resolution equations: A simulation study. Aerosol and Air Quality Research, 13(4), 1253–1262. https://doi.org/10.4209/aaqr.2012.11.0322

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free