The regulation of inflammation is pivotal for preventing the development or reoccurrence of multiple sclerosis (MS). A biased ratio of high-M1 versus low-M2 polarized microglia is a major pathological feature of MS Here, using microarray screening, we identify the long noncoding RNA (lncRNA) GAS5 as an epigenetic regulator of microglial polarization. Gain- and loss-of-function studies reveal that GAS5 suppresses microglial M2 polarization. Interference with GAS5 in transplanted microglia attenuates the progression of experimental autoimmune encephalomyelitis (EAE) and promotes remyelination in a lysolecithin-induced demyelination model. In agreement, higher levels of GAS5 are found in amoeboid-shaped microglia in MS patients. Further, functional studies demonstrate that GAS5 suppresses transcription of TRF4, a key factor controlling M2 macrophage polarization, by recruiting the polycomb repressive complex 2 (PRC2), thereby inhibiting M2 polarization. Thus, GAS5 may be a promising target for the treatment of demyelinating diseases.
CITATION STYLE
Sun, D., Yu, Z., Fang, X., Liu, M., Pu, Y., Shao, Q., … He, C. (2017). Lnc RNA GAS 5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Reports, 18(10), 1801–1816. https://doi.org/10.15252/embr.201643668
Mendeley helps you to discover research relevant for your work.