Integrating Trait-Based Stoichiometry in a Biogeochemical Inverse Model Reveals Links Between Phytoplankton Physiology and Global Carbon Export

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled by physiological responses to the environment. But linking these cellular-level processes to global biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon-to-phosphorus ratios (RC:P) on the distribution of export production. We implement a trait-based mechanistic model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relating RC:P to temperature or phosphate concentration. We find that the way the model represents variable stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying by up to 10% (1.3 Pg C yr−1) across models. Despite these differences, all models exhibit strong consistency with observed dissolved inorganic carbon and phosphate concentrations (R2 > 0.9), underscoring the challenge of selecting the most accurate model structure. We also find that the choice of parameterization impacts the capacity of changing RC:P to buffer predicted export declines. Our novel framework offers a pathway by which additional biological information might be used to reduce the structural uncertainty in model representations of phytoplankton stoichiometry, potentially improving our capacity to project future changes.

References Powered by Scopus

Relationship between wind speed and gas exchange over the ocean

3756Citations
N/AReaders
Get full text

Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis

1091Citations
N/AReaders
Get full text

Glacial/interglacial variations in atmospheric carbon dioxide

1082Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Effect of Brassinolide on Stoichiometric Stability Characteristics of Tall Fescue under Drought Stress in Ecological Restoration

1Citations
N/AReaders
Get full text

Seeing through the gray box: an integrated approach to physiological modeling of phytoplankton stoichiometry

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Sullivan, M. R., Primeau, F. W., Hagstrom, G. I., Wang, W. L., & Martiny, A. C. (2024). Integrating Trait-Based Stoichiometry in a Biogeochemical Inverse Model Reveals Links Between Phytoplankton Physiology and Global Carbon Export. Global Biogeochemical Cycles, 38(3). https://doi.org/10.1029/2023GB007986

Readers over time

‘24036912

Readers' Seniority

Tooltip

Researcher 3

60%

Professor / Associate Prof. 1

20%

PhD / Post grad / Masters / Doc 1

20%

Readers' Discipline

Tooltip

Environmental Science 2

40%

Earth and Planetary Sciences 2

40%

Biochemistry, Genetics and Molecular Bi... 1

20%

Save time finding and organizing research with Mendeley

Sign up for free
0