Beyond the diffraction limit of optical/IR interferometers

  • Domiciano de Souza A
  • Hadjara M
  • Vakili F
  • et al.
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims: Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods: We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br γ line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during ~5 h/night, corresponding to ~60° position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results: By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius Req = 11.6 ± 0.3 Rsun, equatorial rotation velocity Veq = 298 ± 9 km s-1, rotation axis inclination angle i = 101.5 ± 5.2°, and rotation axis position angle (from North to East) PArot = 34.9 ± 1.6°. From these parameters and the stellar distance, the equatorial angular diameter ⌀eq of Achernar is found to be 2.45 ± 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, ⌀eq and PArot measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions: The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to ~4 times smaller than the diffraction-limited angular resolution of the interferometer. Based on observations performed at ESO, Chile under AMBER-consortium GTO programme ID 084.D-0456.Full Fig. 5 is available in electronic form at http://www.aanda.orgThe FITS tables of the reduced data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A130

Cite

CITATION STYLE

APA

Domiciano de Souza, A., Hadjara, M., Vakili, F., Bendjoya, P., Millour, F., Abe, L., … Weigelt, G. (2012). Beyond the diffraction limit of optical/IR interferometers. Astronomy & Astrophysics, 545, A130. https://doi.org/10.1051/0004-6361/201218782

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free