Elastocaloric effect in vanadium (IV) oxide

7Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Elastocaloric cooling utilizes the latent heat associated with stress-induced reversible phase transformations to achieve cooling. Currently, the key barrier to this technology is its prohibitive cost due to the high elastocaloric material cost and the large stress required to drive the cooling cycle. Vanadium (IV) oxide (VO2) is a good candidate, and it is relatively cheap. Our calorimetry study shows it exhibits a reversible phase transformation with a large latent heat of 31.5 J/g as well as excellent functional stability. Its transformation temperature and latent heat are tunable via heat treatment. We demonstrate that VO2 powders can be cyclically compressed in a steel tube using a steel plunger to drive the elastocaloric effect. The application of relatively low stress of 300 MPa is sufficient to result in a reversible temperature change of 0.5 °C on the powder compact. Further improvement of reversible temperature change to 1.6 °C under 300 MPa is achieved by adding conductive copper powders. Future efforts should focus on improving material properties such as heat capacity and thermal conductivity for candidate ceramic oxides to maximize elastocaloric effects.

Cite

CITATION STYLE

APA

Ouyang, G., Pan, C., Wolf, S., Mohapatra, P., Takeuchi, I., & Cui, J. (2020). Elastocaloric effect in vanadium (IV) oxide. Applied Physics Letters, 116(25). https://doi.org/10.1063/5.0012166

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free