Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development

12Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

Abstract

Higher-order spatial organization of the genome into chromatin compartments (permissive and repressive), self-associating domains (TADs), and regulatory loops provides structural integrity and offers diverse gene regulatory controls. In particular, chromatin regulatory loops, which bring enhancer and associated transcription factors in close spatial proximity to target gene promoters, play essential roles in regulating gene expression. The establishment and maintenance of such chromatin loops are predominantly mediated involving CTCF and the cohesin machinery. In recent years, significant progress has been made in revealing how loops are assembled and how they modulate patterns of gene expression. Here we will discuss the mechanistic principles that underpin the establishment of three-dimensional (3D) chromatin structure and how changes in chromatin structure relate to alterations in gene programs that establish immune cell fate.

Cite

CITATION STYLE

APA

Pongubala, J. M. R., & Murre, C. (2021, March 29). Spatial Organization of Chromatin: Transcriptional Control of Adaptive Immune Cell Development. Frontiers in Immunology. Frontiers Media S.A. https://doi.org/10.3389/fimmu.2021.633825

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free