Targeting the EIF2AK1 Signaling Pathway Rescues Red Blood Cell Production in SF3B1-Mutant Myelodysplastic Syndromes With Ringed Sideroblasts

5Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

SF3B1 mutations, which occur in 20% of patients with myelodysplastic syndromes (MDS), are the hallmarks of a specific MDS subtype, MDS with ringed sideroblasts (MDS-RS), which is characterized by the accumulation of erythroid precursors in the bone marrow and primarily affects the elderly population. Here, using single-cell technologies and functional validation studies of primary SF3B1-mutant MDS-RS samples, we show that SF3B1 mutations lead to the activation of the EIF2AK1 pathway in response to heme deficiency and that targeting this pathway rescues aberrant erythroid differentiation and enables the red blood cell maturation of MDS-RS erythroblasts. These data support the development of EIF2AK1 inhibitors to overcome transfusion dependency in patients with SF3B1-mutant MDS-RS with impaired red blood cell production. SIGNIFICANCE: MDS-RS are characterized by significant anemia. Patients with MDS-RS die from a shortage of red blood cells and the side effects of iron overload due to their constant need for transfusions. Our study has implications for the development of therapies to achieve long-lasting hematologic responses.

Cite

CITATION STYLE

APA

Adema, V., Ma, F., Kanagal-Shamanna, R., Thongon, N., Montalban-Bravo, G., Yang, H., … Colla, S. (2022). Targeting the EIF2AK1 Signaling Pathway Rescues Red Blood Cell Production in SF3B1-Mutant Myelodysplastic Syndromes With Ringed Sideroblasts. Blood Cancer Discovery, 3(6), 554–567. https://doi.org/10.1158/2643-3230.BCD-21-0220

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free